BSAUEEE - B.S. Abdur Rahman University Engineering Entrance Exam (BSAUEEE - 2016)

Pen & Paper | Institute Level Exam

Q - When are the results of BSAUEEE are declared?

A -

The results of BSAUEEE are declared mostly in the month of May.

How to Prepare



(1) Applications of Matrices and Determinants

Adjoint, Inverse-Properties, Computation of inverses, a solution of a system of linear equations by matrix inversion method. Rank of a Matrix - Elementary transformation on a matrix, consistency of a system of linear equations, Cramer’s rule, Non-homogeneous equations, homogeneous linear system, rank method.

(2) Vector Algebra

Scalar Product–Angle between two vectors, properties of the scalar product, applications of dot products. Vector Product - Right handed and left handed systems, properties of vector product, applications of the cross product. The product of three vectors - Scalar triple product, properties of the scalar triple product, vector triple product, vector product of four vectors, scalar product of four vectors. Lines - Equation of a straight line passing through a given point and parallel to a given vector, passing through two given points (derivations are not required). The angle between two lines. Skew lines - Shortest distance between two lines, condition for two lines to intersect, the point of intersection, collinearity of three points. Planes - Equation of a plane (derivations are not required), passing through a given point and perpendicular to a vector, given the distance from the origin and unit normal, passing through a given point and parallel to two given vectors, passing through two given points and parallel to a given vector, passing through three given non-collinear points, passing through the line of intersection of two given planes, the distance between a point and a plane, the plane which contains two given lines, angle between two given planes, angle between a line and a plane. Sphere - Equation of the sphere (derivations are not required) whose centre and radius are given, equation of a sphere when the extremities of the diameter are given.

(3) Complex Numbers

Complex number system, Conjugate – properties, ordered pair representation. Modulus – properties, geometrical representation, meaning, polar form, principal value, conjugate, sum, difference, product, quotient, vector interpretation, solutions of polynomial equations, De Moivre’s theorem and its applications. Roots of a complex number - nth roots, cube roots, fourth roots.

(4) Analytical Geometry

Definition of a Conic - General equation of a conic, classification with respect to the general equation of a conic, classification of conics with respect to eccentricity. Parabola - the Standard equation of a parabola (derivation and tracing the parabola are not required), other standard parabolas, the process of shifting the origin, the general form of the standard equation, some practical problems. Ellipse - Standard equation of the ellipse (derivation and tracing the ellipse are not required), x2/a2 + y2/b2 = 1, (a > b), Other standard form of the ellipse, general forms, some practical problems, Hyperbola - standard equation (derivation and tracing the hyperbola are not required), x2/a2 – y2/ b2 = 1, Other form of the hyperbola, parametric form of comics, chords. Tangents and Normals - Cartesian form and Parametric form, the equation of chord of contact of tangents from a point (x1, y1), Asymptotes, Rectangular hyperbola –standard equation of a rectangular hyperbola.

(5) Differential Calculus – Applications I

Derivative as a rate measure - the rate of change - velocity - acceleration - related rates - Derivative as a measure of slope - tangent, normal and angle between curves. Maxima and Minima. Mean value theorem - Rolle’s Theorem – Lagrange Mean Value Theorem - Taylor’s and Maclaurin’s series, l’ Hôpital’s Rule, stationary points - increasing, decreasing, maxima, minima, concavity-convexity, points of inflexion.

(6) Differential Calculus – Applications II

Errors and approximations- absolute, relative, percentage errors, curve tracing, partial derivatives - Euler’s theorem.

(7) Integral Calculus & its Applications

Properties of definite integrals, reduction formulae for six and costs (only results), Area, length, volume and surface area

(8) Differential Equations

Formation of differential equations, order and degree, solving differential equations (1st order) - variable separable homogeneous, linear equations. Second order linear equations with constant coefficients f(x) = Ex, sin mix, cos mix, x, x2.

(9a) Discrete Mathematics

Mathematical Logic - Logical statements, connectives, truth tables, Tautologies.

(9b) Groups :

Binary Operations - Semigroups - monoids, groups (Problems and simple properties only), the order of a group, the order of an element.

(10) Probability Distributions

Random Variable, Probability density function, distribution function, mathematical expectation, variance, Discrete Distributions - Binomial, Poisson, Continuous Distribution - Normal distribution2.


Unit–1. Electrostatics

Frictional electricity, charges and their conservation; Coulomb’s law – forces between two point electric charges. Forces between multiple electric charges – superposition principle. Electric field – Electric field due to a point charge, electric field lines; Electric dipole, electric field intensity due to a dipole – behaviour of the dipole in a uniform electric field – application of electric dipole in a microwave oven. Electric potential – potential difference – electric potential due to a point charge and due a dipole. Equipotential surfaces – Electrical potential energy of a system of two point charges. Electric flux – Gauss’s theorem and its applications to find field due to (1) infinitely long straight wire (2) uniformly charged infinite plane sheet (3) two parallel sheets (4) uniformly charged thin spherical shell (inside and outside) Electrostatic induction – capacitor and capacitance – Dielectric and electric polarisation – parallel plate capacitor with and without dielectric medium–applications of capacitor – energy stored in a capacitor. Capacitors in series and in parallel – action of points – Lightning arrester – Van de Graaff generator.

Unit-2. Current Electricity

The electric current – flow of charges in a metallic conductor – Drift velocity and mobility and their relation with electric current. Ohm’s law, electrical resistance. V-I characteristics – Electrical resistivity and conductivity. Classification of materials in terms of conductivity – Superconductivity (elementary ideas) – Carbon resistors – colour code for carbon resistors – Combination of resistors – series and parallel – Temperature dependence of resistance – Internal resistance of a cell – Potential difference and emf of a cell. Kirchoff’s law – illustration by simple circuits – Wheatstone’s Bridge and its application for the temperature coefficient of resistance measurement – Metre bridge – Special case of Wheatstone bridge – Potentiometer – principle – comparing the emf of two cells. Electric power – Chemical effect of current – Electrochemical cells Primary (Voltaic, Lechlanche, Daniel) – Secondary – rechargeable cell – lead acid accumulator.

Unit – 3. Effects of Electric Current

Heating effect. Joule’s law – Experimental verification. Thermoelectric effects – Seebeck effect – Peltier effect – Thomson effect – Thermocouple, thermal emf, neutral and inversion temperature. Thermopile. Magnetic effect of electric current – Concept of magnetic field, Oersted’s experiment – Biot-Savart law – Magnetic field due to an infinitely long current carrying straight wire and circular coil – Tangent galvanometer – Construction and working – Bar magnet as an equivalent solenoid – magnetic field lines. Ampere’s circuital law and its application. Force on a moving charge in the uniform magnetic field and electric field – cyclotron – Force on current carrying conductor in a uniform magnetic field, forces between two parallel current carrying conductors – definition of ampere. Torque experienced by a current loop in a uniform magnetic field- moving coil galvanometer – Conversion to ammeter and voltmeter – Current loop as a magnetic dipole and its magnetic dipole moment – Magnetic dipole moment of an m revolving electron.

Unit–4.Electromagnetic Induction and Alternating

Current Electromagnetic induction – Faraday’s law – induced emf and current – Lenz’s law. Self-induction – Mutual induction – Self inductance of a long solenoid – mutual inductance of two

long solenoids. Methods of inducing emf – (1) by changing magnetic induction (2) by changing area enclosed by the coil (3) by changing the orientation of the coil (quantitative treatment) analytical treatment can also be included. AC generator – commercial generator. (Single phase, three phase). Eddy current – Applications – Transformer – Long distance transmission. Alternating current–measurement of AC – AC circuit with resistance – AC circuit with inductor – AC circuit with capacitor – LCR series circuit – Resonance and Q – factor: power in AC circuits.

Unit – 5. Electromagnetic Waves and Wave Optics

Electromagnetic waves and their characteristics – Electromagnetic spectrum, Radio, microwaves, Infrared, visible, ultraviolet – X-rays, gamma rays. Emission and Absorption spectrum – Line, Band and continuous spectra – Fluorescence and phosphorescence. Theories of light – Corpuscular – Wave – Electromagnetic and Quantum theories. Scattering of light – Rayleigh’s scattering – Tyndal scattering – Raman effect – Raman spectrum – Blue colour of the sky and reddish appearance of the sun at sunrise and sunset. Wavefront and Huygen’s principle – Reflection, Total internal reflection and refraction of plane wave at a plane surface using wave fronts. Interference – Young’s double slit experiment and expression for fringe width – coherent source – interference of light. Formation of colours in thin films – analytical treatment – Newton’s rings. Diffraction – differences between interference and diffraction of light – diffraction grating. Polarisation of light waves – polarisation by reflection – Brewster’s law-double refraction – Nicol prism – uses of plane polarised light and polaroids – rotatory polarisation – polarimeter

Unit – 6. Atomic Physics

Atomic structure – discovery of the electron – specific charge (Thomson’s method) and charge of the electron (Millikan’s oil drop method) – alpha scattering – Rutherford’s atom model. Bohr’s model – energy quantisation – energy and wave number expression – Hydrogen spectrum – energy level diagrams – sodium and mercury spectra-excitation and ionisation potentials. Sommerfeld’s atom model. X-rays–production, properties, detection, absorption, diffraction of X-rays – Laue’s experiment – Bragg’s law, Bragg’s X-ray spectrometer – X-ray spectra – continuous and characteristic X-ray spectrum – Mosley’s law and atomic number. Masers and Lasers – spontaneous and stimulated emission – normal population and population inversion – Ruby laser, He – Ne laser – properties and applications of laser light – holography.

Unit–7. Dual Nature of Radiation And Matter

relativity Photoelectric effect – Light waves and photons – Einstein’s photo – electric equation – laws of photo – electric emission – particle nature of energy – photoelectric equation – work function – photocells and their application. Matter waves – wave mechanical concept of the atom – wave nature of particles – De – Broglie relation – De – Broglie wavelength of an electron – electron microscope. The concept of space, mass, time – Frame of references. Special theory of relativity – Relativity of length, time and mass with velocity – (E = mc2).

Unit – 8. Nuclear Physics

Nuclear properties–nuclear Radii, masses, binding energy, density, charge – isotopes, isobars and isotones – Nuclear mass defect – binding energy. Stability of nuclei- Bain-bridge mass spectrometer. Nature of nuclear forces – Neutron – discovery – properties – artificial transmutation – particle accelerator Radioactivity – alpha, beta and gamma radiations and their properties, -decay, -decay and decay – Radioactive decay law – half life – mean life. Artificial radioactivity – radioisotopes – effects and uses Geiger – Muller counter. Radiocarbon dating – biological radiation hazards.Nuclear fission – chain reaction – atom bomb – nuclear reactor – nuclear fusion – Hydrogen bomb – cosmic rays – elementary particles.

Unit – 9. Semiconductor Devices and their Applications

Semiconductor theory – energy band in solids – difference between metals, insulators and semiconductors based on band theory – semiconductor doping – Intrinsic and Extrinsic semiconductors. Formation of P-N Junction – Barrier potential and depletion layer. – P-N Junction diode – Forward and reverse bias characteristics – diode as a rectifier – more zen diode. Zener diode as a voltage regulator – LED. Junction transistors – characteristics – transistor as a switch – transistor as an amplifier – transistor biassing – RC, LC coupled and direct coupling in amplifier – feedback amplifier – positive and negative feedback – advantages of negative feedback amplifier – oscillator – condition for oscillations – LC circuit – Colpitts oscillator. Logic gates – NOT, OR, AND, EXOR using discreet components – NAND and NOR gates as universal gates – integrated circuits. Laws and theorems of Boolean’s algebra – operational amplifier – parameters – pin-out configuration – Basic applications. Inverting amplifier. Non-inverting amplifier – summing and difference amplifiers. Measuring Instruments – Cathode Ray oscilloscope – Principle – Functional units – uses. Multimeter – construction and uses.

Unit – 10. Communication Systems

Modes of propagation, ground wave – sky wave propagation. Amplitude modulation, merits and demerits – applications – frequency modulation – advantages and applications – phase modulation. Antennas and directivity. Radio transmission and reception – AM and FM – superheterodyne receiver. T.V. transmission and reception– scanning and synchronising. Vidicon (camera tube) and picture tube – block diagram of a monochrome TV transmitter and receiver circuits. Radar – principle – applications. Digital communication – data transmission and reception – principles of fax, modem, satellite communication – wire, cable and Fibre-optical communication.


Inorganic Chemistry

Unit -1. Atomic Structure

Dual properties of electrons-de-Broglie relation – Heisenberg’s uncertainty principle – Wave nature of an electron – Schrodinger wave equation (only equation, no derivation) – Eigen values and Eigenfunction – significance only – molecular orbital method. Application to Homo diatomic and Hetero diatomic molecules-Metallic Bond – Hybridization of atomic orbitals.Hybridization involving, p and d Orbitals – Types of forces between molecules.

Unit -2.Periodic Classification

Review of periodic properties – Calculation of atomic radii – Calculation of ionic radii-Method of determination of Ionisation potential-Factors affecting ionisation potential – Method to determine the electron affinity – Factors affecting EA-Various scales on electronegativity values.

Unit -3. P – Block Elements

Group – 13 General trends-Potash alum – Preparation, Properties and uses – Group 14 General trends –Silicates – Types and structure – Silicones-Structure and uses – Extraction of lead – Group – 15 General trends – Phosphorous-Allotropes and extraction – Compounds of phosphorous – Group – 16 General trends – H2SO4 – Manufacture and properties. – Group – 17 General characteristics. Physical and Chemical properties – Isolation of fluorine and its properties – Interhalogen compounds Group – 18 Inert gases – Isolation, properties and uses.

Unit - 4. D – Block Elements

General characteristics of D-block elements – First transition series –Occurrence and principles of extraction – chromium, copper and zinc – Alloys – Second transition series – Occurrence and principles of extraction of silver – Third transition series – Compounds – K2Cr2O7, CuSO45H2O, AgNO3, Hg2Cl2, ZnCO3, Purple of Cassius.

Unit -5. F – Block Elements

General characteristics of F-block elements and extraction – Comparison of Lanthanides and Actinides – Uses of lanthanides and actinides.

Unit- 6. Coordination Compounds and Bio-Coordination Compounds

An introduction – Terminology in chemistry – IUPAC nomenclature of coordination compounds – Isomerism in compounds – Structural isomerism – coordination mononuclear coordination Geometrical isomerism in 4 – coordinate, 6 – coordinate complexes – Theories on coordination compounds – Werner’s theory (brief) – Valence Bond theory – Crystal field theory – Uses of coordination compounds – Biocoordination compounds. Haemoglobin and chlorophyll.

Unit -7.Nuclear Chemistry

Nuclear energy nuclear fission and fusion – Radiocarbon dating – Nuclear reaction in sun-Uses of radioactive isotopes.

Physical Chemistry

Unit -8. Solid State –II

Types of packing in crystals-X-Ray crystal structure – Types of ionic crystals – Imperfections in solids – Properties of crystalline solids–Amorphous solid.

Unit -9. Thermodynamics – II

Review of I law – Need for the II law of thermodynamics – Spontaneous and non-spontaneous processes – Entropy – Gibb’s free energy – Free energy change and chemical equilibrium – Third law of thermodynamics.

Unit -10. Chemical Equilibrium – II

Applications of a law of mass action – Le Chatlier’s principle.

Unit -11.Chemical Kinetics-II

First order reaction and pseudo first order reaction – Experimental determination of first order reaction method of determining an order of reaction – temperature dependence of rate constant – Simple and complex reactions.

Unit- 12. Surface Chemistry

Adsorption-Catalysis-Theory of catalysis-Colloids- Preparation of colloids-Properties of colloids-Emulsions.

Unit- 13. Electrochemistry – I

Conductors, insulators and semiconductors – Theory of electrical conductance – Theory of strong electrolytes – Faraday’s laws of electrolysis – Specific resistance, specific conductance, equivalent and molar conductance – Variation of conductance with dilution – Kohlrabi's law – Ionic product of water, pH and pOH – Buffer solutions – Use of pH values.

Unit- 14. Electrochemistry – II

Cells-Electrodes and electrode potentials-Construction of cell and EMF – Corrosion and its preventions-commercial production of chemicals-Fuel cells.

Organic Chemistry

Unit -15. Isomerism In Organic Chemistry

Geometrical isomerism – Conformations of cyclic compounds – Optical isomerism – Optical activity – Chirality – Compounds containing chiral centres-D-L and R-S notation – Isomerism in benzene.

Unit- 16. Hydroxy Derivatives

Nomenclature of alcohols – Classification of alcohols – General methods of preparation of primary alcohols – Properties Methods of the distinction between three classes of alcohols 1°, 2° and 3°) – Methods of preparation of dihydric alcohols. (glycol) – Properties – Uses – Methods of preparation of trihydric alcohols – Properties – Uses – Aromatic alcohols – Methods of preparation of benzyl alcohol Properties – Uses – Phenols – Manufacture of phenols – Properties – Chemical properties – Uses of Phenols.

Unit -17. Ethers

Ethers-General methods of preparation of aliphatic ethers – Properties – Uses – Aromatic ethers – Preparation of anisole – Reactions of anisole – Uses.

Unit - 18. Carbonyl Compounds

Nomenclature of carbonyl compounds – Comparison of aldehydes and ketones – General methods of preparation of aldehydes – Properties – Uses Aromatic aldehydes – Preparation of benzaldehyde – Properties – Uses – Ketones – general methods of preparation of aliphatic ketones (acetone) – Properties – Uses – Aromatic ketones – preparation of acetophenone – Properties – Uses – preparation of benzo – phenone – Properties.

Unit - 19. Carboxylic Acids

Nomenclature – Preparation of aliphatic monocarboxylic c acids – formic acid – Properties – Uses – Tests for carboxylic acid – Monohydroxy monocarboxylic acids – Lactic acid – Sources – Synthesis of lactic acid – Aliphatic dicarboxylic acids – preparation of dicarboxylic acids – oxalic and succinic acids – Properties – Strengths of carboxylic acids – Aromatic acids – Preparation of benzoic acid – Properties – Uses – Preparation of salicylic acid – Properties – Uses – Derivatives of carboxylic acids Preparation of acid chloride – acetyl chloride (CH3COCl) – Preparation – Properties – Uses – Preparation of acetamide – Properties – Preparation of acetic anhydride – Properties – Preparation of esters methyl acetate – Properties.

Unit -20. Organic Nitrogen Compounds

Aliphatic nitro compounds – Preparation of aliphatic nitroalkanes – Properties – Uses – Aromatic nitro compounds – Preparation – Properties – Uses – Distinction between aliphatic and aromatic nitro compounds – Amines – Aliphatic amines – General methods of preparation – Properties – Distinction between 1°, 2°, and 3° amines – Aromatic amines – Synthesis of benzylamine – Properties – Aniline – preparation – Properties – Uses – Distinction between aliphatic and aromatic amines – Aliphatic nitrites – Preparation – properties – Uses – Diazonium salts – Preparation of benzene diazonium chloride – Properties.

Unit -21. Biomolecules

Carbohydrates – structural elucidation – Disaccharides and polysaccharides – Proteins-Amino acids – structure of proteins – Nucleic acids – Lipids.

Unit -22. Chemistry in Action

Medicinal chemistry – Drug abuse – Dyes – classification and uses – Cosmetics – creams, perfumes, talcum powder and deodorants – chemicals in food – Preservatives artificial sweetening agents, antioxidants and edible colours – Insect repellant – pheromones and sex attractants – Rocket fuels – Types of polymers, preparation and uses


Preparation Strategy

Make a proper Time Table

It is very important that you make a timetable and stick to it and you will have an exact idea of what you are required to study and the time required for it.

Concept clarity rather than rotes learning

It is essential that you have a clear idea of the formulas and concepts rather than rote learning of things for the papers. While you might require it for memorizing formulas it is important that for other stuff you make sure you clear your basics and concepts before moving on.

Prepare Notes

It is very important make small notes or a comprehensive list of formulas on each covered topic and chapter which will come in handy at the time of revision. This will require you to be regular with your work but will surely make things easy at the time of revision.

Revision of Class XI and XII concepts

Make sure that you revise your concepts from the syllabus of these classes before starting anything new as most of the engineering exams will be for admission to undergraduate courses and so the syllabi from class XI and XII becomes the testing ground to check students.

Seek guidance

It is not possible for you to know everything in your syllabus, at least not at the time of preparation. Sooner or later you will run into a concept or so which will give you trouble and then it is best you seek guidance from an instructor or a teacher. It is necessary that you clear your doubts at regular intervals and don’t prolong things for long. Getting into a good coaching class is nothing to be ashamed off and if anything a regular coaching class will enable you to avoid roadblocks in your preparation.

Sample Papers

Even though there may be a complete change in the exam pattern or the expected questions altogether,it is important that you practice on the sample and previous years question papers available for the engineering exam you’d be attempting. You will know the existing pattern and have a fair idea of the type of questions to expect in the paper along with the time constraint.

Mock tests

The paper pattern, duration of the paper and the number of questions to be attempted in the given amount of time is not something you will be able to pick up on the day of the examination. A Mock Test tests a student’s abilities as it not only provides a similar feel of real exams but also helps in building speed and confident to face the exam. Furthermore, they can improve their performance to get an extra edge in actual exams. Try to build up an Engineering Entrance Exam Test Prep MCQ Question Bank

Time management

Time management can be learnt through thorough practice and regular test taking. So it is important that you practice it and practice it well.

Negative marking

Most the entrance examinations will have negative marking and everyone would suggest you stay clear of questions are not sure about. But some experts are of the opinion that you answer the questions in which you are confused between an option or two because there will also be a chance of getting it right.

BSAUEEE 2016 Question Paper Format

online Pen & Paper
Exam Type
marks 1.0 Mark
Correct Question Mark
marks 0.0 Mark
Negative Marking

BSAUEEE 2016 News and Updates

Admission Notice-B.S Abdur Rahman University announces BSAUEEE’16
February 08, 2016 02:24 PM

B.S Abdur Rahman University announces BSAUEEE’16. All aspired engineers and architects are requested to fill out the forms on time. Programmes offered: B.Tech Civil Mech Mech(Auto) Mech(Production) Aeronautical ECE CSE IT EEE E&I Polymer Biotech Cancer ...Read more


B.S. Abdur Rahman University conducts Engineering Entrance Examination on an all India basis for the selection of candidates for admission to B.Tech. Degree Programmes. The selection of candidates for the admission to the programs will be made based on the merits of candidates in both qualifying examination and Engineering Entrance Examination conducted by the University.

Candidates should have appeared for the Engineering Entrance Examination (BSAUEEE) conducted by the University or should have a valid score in JEE (Main).

Courses Offered-

  • Aeronautical Engineering
  • Civil Engineering
  • Computer Science & Engineering
  • Electrical & Electronics Engineering
  • Electronics & Communication Engineering
  • Electronics & Instrumentation Engineering
  • Information Technology
  • Mechanical Engineering
  • Automobile Engineering
  • Production Engineering
  • Polymer Engineering
  • Biotechnology
  • Cancer Biotechnology

BSAUEEE 2016 Conducting Body

B.S. Abdur Rahman University conducts BSAUEEE - B.S. Abdur Rahman University Engineering Entrance. B.S. Abdur Rahman Crescent Engineering College, which has now been upgraded as B.S Abdur Rahman University, was an institution acclaimed throughout India for its quality in teaching and research. Being one of the largest engineering institutions in India, it lays emphasis on innovative research, investment in high-quality facilities and first-rate infrastructure. By making use of the latest technologies and quality teaching, the college is able to offer a wide choice of interdisciplinary degrees in engineering which has enabled students to gain accolades in the global level. It is one of the few institutions with all the UG and PG programmes approved by AICTE and accredited by the National Board of Accreditation. This has been upgraded to university status with a view to keep academic in pace with development in industry. Modern hostel facilities are available for men and women students separately within the University campus.

BSAUEEE Contact Details

Address Seethakathi Estate, Vandalur, Chennai, Tamil Nadu 600048
Phone no 044 2275 1347
Type Institute
Mode Pen & Paper


1) What is BSAUEEE?

It is an engineering Entrance exam conducted on all India bases for admission into B.Tech. degree programs at B.S. Abdur University, Chennai.

2) Who conducts BSAUEEE?

B.S. Abdur University, Chennai conducts BSAUEEE.

3) When is the BSAUEEE held?

The exam is held mostly during the month of April.

4) When are the application forms for BSAUEEE are issued?

The application forms for BSAUEEE are issued mostly in the month of January.

5) When is the last date of the submission of the application forms of BSAUEEE?

The last date of the submission of the application forms of BSAUEEE is mostly in the month of April.

6) Where is the BSAUEEE exam held?

The BSAUEEE exam is held in various major cities of India.

7) How to obtain the Admit card after registering for BSAUEEE?

After registering for BSAUEEE, the Admit card may be downloaded from the official website of the university .

8) What is the language in which the BSAUEEE paper may be attempted?

The BSAUEEE question paper and the instructions to be followed are only in English language.

9) What is the procedure to obtain BSAUEEE application form?

The application form may be obtained

  • In person from the university admission office. The application fee of Rs. 600/- is to be paid in cash or DD, drawn in favour of “B.S.Abdur Rahman University”, payable at Chennai.
  • Online application: The candidate may also apply online to appear for BSAUEEE exam. For online application, the candidate can pay the application fee 0f RS 600/- through Internet Banking/ Debit Card/Credit card or can also pay by sending a DD of Rs 600/- drawn in favour of “B.S.Abdur Rahman University”, payable at Chennai. The application may be filled online on the official website of the University .
  • To obtain application form by post, a written request has to be sent along with a DD of Rs 600/- drawn in favour of “B.S.Abdur Rahman University”, payable at Chennai. The letter is to be sent to the Admissions Director. It should contain the personal details of the candidate and the program one aspires to get admission into. The postal address to obtain the application form is  :-

Director (Admissions),
B.S. Abdur Rahman University
Vandalur, Chennai-600 048.
Contact No.: 044-22751347/48/50/75

10) Where will the exam centres be formed for the exam?

The test will be conducted at  
Centres in Tamilnadu  :-
1. Chennai
2. Coimbatore
3. Erode
4. Madurai
5. Nagapattinam
6. Nagercoil
7. Ramanathapuram
8. Tiruchirappalli
9. Tirunelveli
10. Vaniyambadi
Centres in other States/Union Territories:-
1. Ahmedabad
2. Bangalore
3. Bhopal
4. Bhubaneswar
5. Cochin
6. Guwahati
7. Hyderabad
8. Kolkatta
9. Lucknow
10. Mysore
11. Nellore
12. New Delhi
13. Patna
14. Pondicherry
15. Pune
16. Thiruvananthapuram
17. Visakhapatnam

11) Is BSAUEEE an online exam?

BSAUEEE exam may be taken as offline mode.

12) What are the Eligibility Criteria for admission into B.Tech. Programs offered at the University?

For admission into B.Tech. Programs offered at the University,  

  • Candidate should have passed 12th standard Or its equivalent with a minimum aggregate of 50% marks in Physics, Chemistry and Mathematics. For admission into Biotechnology programs the candidate should have a minimum aggregate of 50% marks in Physics, Chemistry and Mathematics/Biology.  
  • Candidate should have appeared for BSAUEEE.  
  • The candidate should have passed out 10+2 in the current year of appearing in the BSAUEEE exam.
  • -Candidate must have taken a regular, full time and a formal education to be eligible for the course.

13) What is the paper pattern of BSAUEEE?

  • The BSAUEEE exam consists of questions from three core subjects.
  • The question paper consists of multiple choice objective type questions with four answers for each question, out of which only one is correct.  
  • The paper consists of 25 questions each from Physics and Chemistry and 50 questions from Mathematics.
  • All questions carry one mark each and therefore a total of 100 marks.  
  • If a candidate indicates more than one answer for a question, the answer is treated as incorrect.

14) What is the duration of BSAUEEE exam?

The question paper has to be attempted in the duration of two hours.

15) What is maximum Age Eligibility Criteria ?

No,There is no upper or lower age limit.

16) Will there be any negative marking?

No,there is no negative marking.

17) What is the minimum marks should I get both in the 12th board examination and in entrance exam to avail a seat in BSAUEEE?

The candidate should have obtained a minimum of aggregate 50% marks in Senior secondary exam. He/she should have a required rank in the entrance test.

18) I am a General class candidate and got less than 40% (in the range of 30-40%) in my Senior secondary . Am I eligible for BSAUEEE entrance exams?

No,you are not allowed.

19) When are the results of BSAUEEE are declared?

The results of BSAUEEE are declared mostly in the month of May.

20) What is the section process after appearing for BSAUEEE?

The candidates are admitted to the B.Tech. programs of the university on the basis of the merit of the candidate in the Engineering Entrance exam as well as in the qualifying exam through counselling held after the BSAUEEE results are declared.

21) What is the selection process for admission to the programs at the University?

The selection of the candidates to the programs at the University is based on the merit of the candidate in the Engineering Entrance exam i.e. BSAUEEE conducted by the university and in the qualifying examination. The candidates satisfying the eligibility criteria are admitted to the B.Tech. Programs through the counselling based on the merit and the preference and the availability of the seats in a particular preferred branch.

22) What are the engineering courses offered at B S Abdur University?

The courses offered at BS Abdur University are:

  • Aeronautical Engineering  
  • Automobile Engineering,  
  • Civil Engineering,  
  • Electrical and Electronics Engineering,  
  • Computer Science Engineering,  
  • Electronics and Communication Engineering,  
  • Electronics and Instrumentation Engineering,
  • Information Technology,
  • Polymer Engineering,  
  • Mechanical Engineering,
  • Bio Technology,  
  • Food Bio Technology and  
  • Cancer Bio Technology.

23) What is the contact email id of the university regarding admissions?

The contact email id for admissions is

24) Does the University offer Post graduate programs in Engineering?

Yes, the university also offers graduate programs in Engineering.

25) IS BS Abdur University UGC recognised?

Located at the outskirts of Chennai City, BS Abdur University is a UGC recognised university under section 3 of the UGC Act 1956. All the Under Graduate and Post Graduate courses offered by the university are approved by AICTE and accredited by National Board of Accreditation and rated as ‘A’ Grade.

26) Does BS Abdur University offer Hostel Accommodation?

BS Abdur University offers an adequate fully equipped and separate hostel facility for boys and girls within the campus.

27) How does the University assist after the student has finished the course from the university?

The University makes sure that the candidate passing out of the University has a secured future. It has a separate Placement Cell. The Placement Cell has a full time training and Placement officer who assists the students with his extensive work experience. The Training and Placement Cell provides:

  • Practices for appearing in the preliminary tests, group discussions and Interviews as conducted by the companies for placements.
  • The University has a fully equipped convention centre with auditorium for pre placement discussions.
  • The cell arranges campus interviews from good and reputed firms across the nation and worldwide.

The University also has an Industry Institute Partnership cell and Entrepreneurship Development cell that helps to arrange the live industrial training to the students and guides them to turn into entrepreneurs respectively.

28) What are the other courses Under Graduate courses offered by the BS Abdur University?

The University also offers B.Arch. as an Undergraduate program.

29) Does the BS Abdur University offer Research Programs?

There are research programs such as PhD and M.Tech. Programs offered by all the engineering departments of the University. For the research activities within the campus, a Dean is appointed that also acts as a director for the centre for Sponsored Research and Consultancy, created for the students. They also have a ‘Research Board’, consisting of experienced faculty members that guide the students for policy, regulation related matters.