Updated By Lipi on 28 Aug, 2025 17:14
Manipal University releases the MU OET 2026 syllabus pdf. The MET 2026 Syllabus includes 4 subjects as Physics, Chemistry, Biology, Mathematics, and English.
Get MU OET Sample Papers For Free
Manipal Academy of Higher Education will be releasing the MU OET 2026 syllabus a few days before the exam. If you are interested in taking the exam, then you must ensure to know all the details about the MU OET syllabus. The MET syllabus is inclusive of a total of 4 subjects, ie, Physics, Chemistry, Mathematics, and English. Along with the syllabus, you should also focus on the important topics. There are various important topics that are included in the subjects of Manipal MET, such as Algebra, Coordinate Geometry, etc, in Mathematics, Kinematics, Electrostatics, etc in Physics, Chemical Thermodynamics, Equilibrium, etc, in Chemistry, and Synonyms / Question tags, One-word substitutions, etc, in English. Moreover, along with the MET syllabus, you should analyze the MU OET 2026 exam pattern to understand the marking scheme, section-wise weightage, duration, etc. Read the full post to check the subject-wise MU OET 2026 syllabus.
The MU OET 2026 syllabus pdf is yet to be published by Manipal University. However, until the official syllabus is announced, you can go through the previous year's pdf link mentioned below:-
| MU OET 2025 syllabus PDF |
|---|
The MET syllabus 2026 of Mathematics includes various key areas such as Algebra, Coordinate Geometry, Calculus, etc. They are further extended into various sub-topics, and you are recommended to go through them carefully. You can further take a look at the detailed mathematics syllabus of MET 2026 from the table below:-
Key Areas | Sub-topics |
|---|---|
Sets and Functions |
|
Algebra |
|
Coordinate Geometry |
|
Calculus |
|
| Mathematical Reasoning |
|
The physics syllabus of MET 2026 involves important topics like Kinematics, Motion of Systems of Particles and Rigid Bodies, Behaviour of Perfect Gases and Kinetic Theory of Gases, Electrostatics, etc. Check the detailed Physics syllabus of MET 2025 from the table below:-
Key areas | Sub-topics |
|---|---|
Physical World and Measurement |
|
Kinematics |
|
Motion of System of Particles and Rigid Body |
|
Behaviour of Perfect Gases and Kinetic Theory of Gases |
|
Electrostatics | Electric Charges and Fields: Electric Charges; Conservation of charge, Coulomb's law-force between two-point charges, forces between multiple charges; superposition principle and continuous charge distribution. Electric field, electric field due to a point charge, electric field lines, electric dipole, electric field due to a dipole, torque on a dipole in a uniform electric field. Electric flux, statement of Gauss's theorem and its applications to find the field due to an infinitely long straight wire, a uniformly charged infinite plane sheet. Electrostatic Potential and Capacitance: Electric potential, potential difference, electric potential due to a point charge, a dipole and system of charges; equipotential surfaces, electrical potential energy of a system of two-point charges and of electric dipole in an electrostatic field. Conductors and insulators, free charges and bound charges inside a conductor. Dielectrics and electric polarisation, capacitors and capacitance, combination of capacitors in series and in parallel, capacitance of a parallel plate capacitor with and without dielectric medium between the plates, energy stored in a capacitor. |
Current Electricity | Current Electricity: Electric current, flow of electric charges in a metallic conductor, drift velocity, mobility and their relation with electric current; Ohm's law, electrical resistance, V-I characteristics (linear and non-linear), electrical energy and power, electrical resistivity and conductivity; temperature dependence of resistance. Internal resistance of a cell, potential difference and emf of a cell, combination of cells in series and in parallel, Kirchhoff's laws and simple applications, Wheatstone bridge, metre bridge (qualitative ideas only) Potentiometer - principle and its applications to measure potential difference and for 14 comparing EMF of two cells; measurement of internal resistance of a cell (qualitative ideas only) |
Magnetic Effects of Current and Magnetism | Moving Charges and Magnetism: Concept of magnetic field, Oersted's experiment. Biot-Savart law and its application to a current-carrying circular loop. Ampere's law and its applications to an infinitely long straight wire. Straight and toroidal solenoids (only qualitative treatment), force on a moving charge in uniform magnetic and electric fields, Force on a current-carrying conductor in a uniform magnetic field, force between two parallel current-carrying conductors-definition of ampere, torque experienced by a current loop in a uniform magnetic field; moving coil galvanometer-its current sensitivity and conversion to ammeter and voltmeter. Magnetism and Matter: Current loop as a magnetic dipole and its magnetic dipole moment, magnetic dipole moment of a revolving electron, bar magnet as an equivalent solenoid, magnetic field lines; Earth's magnetic field and magnetic elements. |
Electromagnetic Induction and Alternating Currents |
|
Electronic Devices |
|
The MET Chemistry syllabus 2026 consists of various topics such as Structure of atom, Classification of Elements and Periodicity in Properties, Chemical Bonding and Molecular Structure, States of Matter, etc. You can check the detailed MET Chemistry syllabus 2026 from the table below:-
Key areas | Sub-topics |
|---|---|
Some Basic Concepts of Chemistry | General Introduction: Importance and scope of chemistry, Nature of matter, laws of chemical combination, Dalton's atomic theory: concept of elements, atoms and molecules, Atomic and molecular masses, mole concept and molar mass, percentage composition, empirical and molecular formula, chemical reactions, stoichiometry and calculations based on stoichiometry. |
Structure of an atom | Bohr's model and its limitations, concept of shells and subshells, dual nature of matter and light, de Broglie's relationship, Heisenberg uncertainty principle, concept of orbitals, quantum numbers, shapes of s, p and d orbitals, rules for filling electrons in orbitals - Aufbau principle, Pauli's exclusion principle and Hund's rule, electronic configuration of atoms, stability of half-filled and completely filled orbitals. |
Classification of Elements and Periodicity in Properties | Modern periodic law and the present form of periodic table, periodic trends in properties of elements -atomic radii, ionic radii, inert gas radii, ionisation enthalpy, electron gain enthalpy, electronegativity, valency. Nomenclature of elements with atomic number greater than 100 |
Chemical Bonding and Molecular structure | Valence electrons, ionic bond, covalent bond, bond parameters, Lewis structure, polar character of covalent bond, covalent character of ionic bond, valence bond theory, resonance, geometry of covalent molecules, VSEPR theory, concept of hybridization, involving s, p and d orbitals and shapes of some simple molecules, molecular orbital theory of homonuclear diatomic molecules (qualitative idea only), hydrogen bond. |
States of Matter: Gases and Liquids | Three states of matter, intermolecular interactions, types of bonding, melting and boiling points, role of gas laws in elucidating the concept of the molecule, Boyle's law, Charles law, Gay Lussac's law, Avogadro's law, ideal behaviour, empirical derivation of gas equation, Avogadro's number, ideal gas equation. Deviation from ideal behaviour, liquefaction of gases, critical temperature, kinetic energy and molecular speeds (elementary idea) Liquid State: vapour pressure, viscosity and surface tension (qualitative idea only, no mathematical derivations). |
Chemical Thermodynamics | Concepts of System and types of systems, surroundings, work, heat, energy, extensive and intensive properties, state functions. First law of thermodynamics -internal energy and enthalpy, heat capacity and specific heat, measurement of ΔU and ΔH, Hess's law of constant heat summation, enthalpy of bond dissociation, combustion, formation, atomization, sublimation, phase transition, ionization, solution and dilution. Second law of Thermodynamics (brief introduction). Introduction of entropy as a state function, Gibb's energy change for spontaneous and non- spontaneous processes, criteria for equilibrium. Third law of thermodynamics (brief introduction). |
Equilibrium | Equilibrium in physical and chemical processes, dynamic nature of equilibrium, law of mass action, equilibrium constant, factors affecting equilibrium- Le Chatelier's principle, ionic equilibrium- ionization of acids and bases, strong and weak electrolytes, degree of ionization, ionization of poly basic acids, acid strength, concept of pH, Henderson Equation, hydrolysis of salts (elementary idea), buffer solution, solubility product, common ion effect (with illustrative examples). |
Redox Reactions | Concept of oxidation and reduction, redox reactions, oxidation number, balancing redox reactions, in terms of loss and gain of electrons and change in oxidation number, applications of redox reactions. |
Hydrogen | Position of hydrogen in periodic table, occurrence, isotopes, preparation, properties and uses of hydrogen, hydrides-ionic covalent and interstitial; physical and chemical properties of water, heavy water, hydrogen peroxide - preparation, reactions and structure and use; hydrogen as a fuel. |
s-Block Elements (Alkali and Alkaline Earth Metals) | Group 1 and Group 2 Elements General introduction, electronic configuration, occurrence, anomalous properties of the first element of each group, diagonal relationship, trends in the variation of properties (such as ionization enthalpy, atomic and ionic radii), trends in chemical reactivity with oxygen, water, hydrogen and halogens, uses. Preparation and Properties of Some Important Compounds: Sodium Carbonate, Sodium Chloride, Sodium Hydroxide and Sodium Hydrogen carbonate, Biological importance of Sodium and Potassium. Calcium Oxide and Calcium Carbonate and their industrial uses, biological importance of Magnesium and Calcium |
p-Block Elements | General Introduction to p -Block Elements Group 13 Elements: General introduction, electronic configuration, occurrence, variation of properties, oxidation states, trends in chemical reactivity, anomalous properties of first element of the group, Boron - physical and chemical properties, some important compounds, Borax, Boric acid, Boron Hydrides, Aluminium: Reactions with acids and alkalies, uses. Group 14 Elements: General introduction, electronic configuration, occurrence, variation of properties, oxidation states, trends in chemical reactivity, anomalous behaviour of first elements. Carbon-catenation, allotropic forms, physical and chemical properties; uses of some important compounds: oxides. Important compounds of Silicon and a few uses: Silicon Tetrachloride, Silicones, Silicates and Zeolites, their uses. |
Organic Chemistry - Some Basic Principles and Techniques | General introduction, methods of purification, qualitative and quantitative analysis, classification and IUPAC nomenclature of organic compounds. Electronic displacements in a covalent bond: inductive effect, electromeric effect, resonance and hyper conjugation. Homolytic and heterolytic fission of a covalent bond: free radicals, carbocations, carbanions, electrophiles and nucleophiles, types of organic reactions |
Hydrocarbons | Classification of Hydrocarbons Aliphatic Hydrocarbons: Alkanes - Nomenclature, isomerism, conformation (ethane only), physical properties, chemical reactions including free radical mechanism of halogenation, combustion and pyrolysis. Alkenes - Nomenclature, structure of double bond (ethene), geometrical isomerism, physical properties, methods of preparation, chemical reactions: addition of hydrogen, halogen, water, hydrogen halides (Markownikov's addition and peroxide effect), ozonolysis, oxidation, mechanism of electrophilic addition. Alkynes - Nomenclature, structure of triple bond (ethyne), physical properties, methods of preparation, chemical reactions: acidic character of alkynes, addition reaction of - hydrogen, halogens, hydrogen halides and water. Aromatic Hydrocarbons: Introduction, IUPAC nomenclature, benzene: resonance, aromaticity, chemical properties: mechanism of electrophilic substitution. Nitration, sulphonation, halogenation, Friedel Craft's alkylation and acylation, directive influence of functional group in monosubstituted benzene, Carcinogenicity and toxicity. |
Environmental Chemistry | Environmental pollution - air, water and soil pollution, chemical reactions in atmosphere, smog, major atmospheric pollutants, acid rain, ozone and its reactions, effects of depletion of ozone layer, greenhouse effect and global warming- pollution due to industrial wastes, green chemistry as an alternative tool for reducing pollution, strategies for control of environmental pollution. |
Solutions | Types of solutions, expression of concentration of solutions of solids in liquids, solubility of gases in liquids, solid solutions, colligative properties - relative lowering of vapour pressure, Raoult's law, elevation of boiling point, depression of freezing point, osmotic pressure, determination of molecular masses using colligative properties, abnormal molecular mass, Van't Hoff factor. |
Electrochemistry | Redox reactions, conductance in electrolytic solutions, specific and molar conductivity, variations of conductivity with concentration, Kohlrausch's Law, electrolysis and law of electrolysis (elementary idea), dry cell-electrolytic cells and Galvanic cells, lead accumulator, EMF of a cell, standard electrode potential, Nernst equation and its application to chemical cells, Relation between Gibbs energy change and EMF of a cell, fuel cells, corrosion. |
Chemical Kinetics | Rate of a reaction (Average and instantaneous), factors affecting rate of reaction: concentration, temperature, catalyst; order and molecularity of a reaction, rate law and specific rate constant, integrated rate equations and half-life (only for zero and first order reactions), concept of collision theory (elementary idea, no mathematical treatment). Activation energy, Arrhenius equation. |
Surface Chemistry | Adsorption - physisorption and chemisorption, factors affecting adsorption of gases on solids, catalysis, homogenous and heterogenous activity and selectivity; enzyme catalysis colloidal state distinction between true solutions, colloids and suspension; lyophilic, lyophobic multi-molecular and macromolecular colloids; properties of colloids; Tyndall effect, Brownian movement, electrophoresis, coagulation, emulsion - types of emulsions. |
General Principles and Processes of Isolation of Elements | Principles and methods of extraction - concentration, oxidation, reduction - electrolytic method and refining; occurrence and principles of extraction of aluminium, copper, zinc and iron. |
p-Block Elements | Group 16 Elements: General introduction, electronic configuration, oxidation states, occurrence, trends in physical and chemical properties, dioxygen: Preparation, Properties and uses, classification of Oxides, Ozone, Sulphur - allotropic forms; compounds of Sulphur: Preparation Properties and uses of Sulphur-dioxide, Sulphuric Acid: industrial process of manufacture, properties and uses; Oxoacids of Sulphur (Structures only). Group 17 Elements: General introduction, electronic configuration, oxidation states, occurrence, trends in physical and chemical properties; compounds of halogens, Preparation, properties and uses of Chlorine and Hydrochloric acid, interhalogen compounds, Oxoacids of halogens (structures only). Group 18 Elements: General introduction, electronic configuration, occurrence, trends in physical and chemical properties, uses. |
‘d’ and ‘f’ Block Elements | General introduction, electronic configuration, occurrence and characteristics of transition metals, general trends in properties of the first-row transition metals - metallic character, ionization enthalpy, oxidation states, ionic radii, colour, catalytic property, magnetic properties, interstitial compounds, alloy formation, preparation and properties of K2Cr2O7 and KMnO4. Lanthanoids - Electronic configuration, oxidation states, chemical reactivity and lanthanoid contraction and its consequences. Actinoids - Electronic configuration, oxidation states and comparison with lanthanoids. |
Coordination Compounds | Coordination compounds - Introduction, ligands, coordination number, colour, magnetic properties and shapes, IUPAC nomenclature of mononuclear coordination compounds. Bonding, Werner's theory, VBT, and CFT; structure and stereoisomerism, importance of coordination compounds (in qualitative inclusion, extraction of metals and biological system). |
Haloalkanes and Haloarenes | Haloalkanes: Nomenclature, nature of C-X bond, physical and chemical properties, mechanism of substitution reactions, optical rotation. Haloarenes: Nature of C-X bond, substitution reactions (Directive influence of halogen in monosubstituted compounds only). Uses and environmental effects of - dichloromethane, trichloromethane, tetrachloromethane, iodoform, freons, DDT. |
Alcohols, Phenols and Ethers | Nomenclature, methods of preparation, physical and chemical properties (of primary alcohols only), identification of primary, secondary and tertiary alcohols, mechanism of dehydration, uses with special reference to methanol and ethanol. Phenols: Nomenclature, methods of preparation, physical and chemical properties, acidic nature of phenol, electrophilic substitution reactions, uses of phenols. Ethers: Nomenclature, methods of preparation, physical and chemical properties, uses |
Aldehydes, Ketones and Carboxylic Acids | Aldehydes and Ketones: Nomenclature, nature of carbonyl group, methods of preparation, physical and chemical properties, mechanism of nucleophilic addition, reactivity of alpha hydrogen in aldehydes, uses. Carboxylic Acids: Nomenclature, acidic nature, methods of preparation, physical and chemical properties; uses. |
Organic compounds containing Nitrogen | Amines: Nomenclature, classification, structure, methods of preparation, physical and chemical properties, uses, identification of primary, secondary and tertiary amines. Cyanides and Isocyanides - will be mentioned at relevant places in text. Diazonium salts: Preparation, chemical reactions and importance in synthetic organic chemistry. |
Biomolecules | Carbohydrates - Classification (aldoses and ketoses), monosaccharides (glucose and fructose), D-L configuration oligosaccharides (sucrose, lactose, maltose), polysaccharides (starch, cellulose, glycogen); Importance of carbohydrates. Proteins -Elementary idea of - amino acids, peptide bond, polypeptides, proteins, structure of proteins - primary, secondary, tertiary structure and quaternary structures (qualitative idea only), denaturation of proteins; enzymes. Hormones - Elementary idea excluding structure. Vitamins - Classification and functions. Nucleic Acids: DNA and RNA. |
Polymers | Copolymerization, some important polymers: natural and synthetic, like polythene, nylon, polyesters, bakelite, rubber. Biodegradable and nonbiodegradable polymers. |
Chemistry in Everyday Life | Chemicals in medicines - analgesics, tranquilizers antiseptics, disinfectants, antimicrobials, antifertility drugs, antibiotics, antacids, antihistamines. Chemicals in food - preservatives, artificial sweetening agents, elementary idea of antioxidants, Cleansing agents- soaps and detergents, cleansing action. |
The English Language subject includes 'General English' at the Class 10 + 2 Level. It is intended to assess students' understanding of essential topics in the English language, grammar, and usage. You can check the detailed MET English syllabus 2026 given below:-
During the preparation of MET 2026, you must pay heed to the important topics in the syllabus. The important topics are divided per subject, and you can find the same in the table below:-
Name of the Subjects | Important Topics |
|---|---|
Mathematics |
|
Physics |
|
Chemistry |
|
English |
|
The MET 2026 exam pattern will soon be released on the official website. The test pattern for MET 2026 includes key parameters such as exam time, the number of questions, the marking method, and so on. You should review the MET 2026 exam pattern given below:-
Parameters | Information |
|---|---|
Exam mode | Computer-Based Test (CBT) Mode |
Exam Duration | 2 hours (120 minutes) |
Questions type | Multiple choice objective-type questions (MCQ) Numerical Answer Type (NAT) |
Exam Duration | 2 hours (120 minutes) |
Total no. of questions | 60 |
Number of sections | Four |
Section Name |
|
Marking scheme |
|
Want to know more about MU OET
The duration of the MET 2025 exam is 120 minutes.
The total mark for the MET 2025 exam is 240.
Candidates can check the MET 2025 syllabus at manipal.edu.
The subjects covered under the syllabus of MET 2025 are Mathematics, Physics, Chemistry and English.
Typical response between 24-48 hours
Get personalized response
Free of Cost
Access to community