Three identical spheres, each of mass \(M\), are placed at the corners of a right-angle triangle with mutually perpendicular sides equal to \(2~\text{m}\) (see figure). Taking the point of intersection of the two mutually perpendicular sides as the origin, find the position vector of the centre of mass.
Two particles of mass \(5~\text{kg}\) and \(10~\text{kg}\) respectively are attached to the two ends of a rigid rod of length \(1~\text{m}\) with negligible mass. The centre of mass of the system from the \(5~\text{kg}\) particle is nearly at a distance of:
Three masses are placed on the \(x\)-axis: \(300~\text{g}\) at origin, \(500~\text{g}\) at \(x= 40~\text{cm}\) and \(400~\text{g}\) at \(x= 70~\text{cm}.\) The distance of the centre of mass from the origin is:
Two persons of masses \(55~\text{kg}\) and \(65~\text{kg}\) respectively, are at the opposite ends of a boat. The length of the boat is \(3.0~\text{m}\) and weighs \(100~\text{kg}.\) The \(55~\text{kg}\) man walks up to the \(65~\text{kg}\) man and sits with him. If the boat is in still water, the centre of mass of the system shifts by:
A man of \(50\) kg mass is standing in a gravity-free space at a height of \(10\) m above the floor. He throws a stone of \(0.5\) kg mass downwards with a speed of \(2\) ms-1. When the stone reaches the floor, the distance of the man above the floor will be:
Two particles that are initially at rest, move towards each other under the action of their mutual attraction. If their speeds are \(v\) and \(2v\) at any instant, then the speed of the centre of mass of the system will be:
Two bodies of mass \(1\) kg and \(3\) kg have position vectors \(\hat{i}+2\hat{j}+\hat{k}\) and \(-3\hat{i}-2\hat{j}+\hat{k}\) respectively. The centre of mass of this system has a position vector:
Want to know more about NEET
Typical response between 24-48 hours
Get personalized response
Free of Cost
Access to community