A system consists of three masses \(m_1,\)\(m_2,\) and \(m_3\) connected by a string passing over a pulley \(\mathrm{P}.\) The mass \(m_1\) hangs freely, and \(m_2\) and \(m_3\) are on a rough horizontal table (the coefficient of friction \(=\mu.\)) The pulley is frictionless and of negligible mass. The downward acceleration of mass \(m_1\) is:
(Assume \(m_1=m_2=m_3=m\) and \(g\) is the acceleration due to gravity.)

The upper half of an inclined plane of inclination \(\theta\) is perfectly smooth while the lower half is rough. A block starting from rest at the top of the plane will again come to rest at the bottom if the coefficient of friction between the block and the lower half of the plane is given by:
A block of mass \(m\) is in contact with the cart \((C)\) as shown in the figure.
The coefficient of static friction between the block and the cart is \(\mu.\) The acceleration \(a\) of the cart that will prevent the block from falling satisfies:
A block \(B\) is pushed momentarily along a horizontal surface with an initial velocity \(v.\) If \(\mu\) is the coefficient of sliding friction between \(B\) and the surface, the block \(B\) will come to rest after a time:
On the horizontal surface of a truck, a block of mass \(1\) kg is placed (\(\mu = 0.6\)) and the truck is moving with an acceleration of \(5\) m/s2. The frictional force on the block will be:
Want to know more about NEET
Typical response between 24-48 hours
Get personalized response
Free of Cost
Access to community