CBSE Class 12th Mathematics Chapter 4 - Determinants Important Questions with Answers

You should focus on solving CBSE Class 12th Mathematics Chapter 4: Determinants important questions, especially to help you score high marks. By solving CBSE Class 12th Mathematics 4 questions, you will be solving exam-oriented questions only.
examUpdate

Never Miss an Exam Update

Prepare thoroughly with the most important questions of CBSE Class 12th Mathematics Chapter 4 - Determinants. You can first cover the CBSE Class 12th Mathematics syllabus to understand the key topics and then start solving the CBSE Class 12th Mathematics Chapter 4 - Determinants Important Question to get a better understanding of your preparation level. Start practicing now.

Read More
/cbse-class-12-mathematics-chapter-4-determinants-important-questions-brd

Question 1.

img
Find |AB|, if A = \(\left[\begin{array}{rr}
0 & -1 \\
0 & 2
\end{array}\right]\) and B = \(\left[\begin{array}{ll}
3 & 5 \\
0 & 0
\end{array}\right]\). (All India 2019)

Question 2.

img
If A = \(\left[\begin{array}{ll}
p & 2 \\
2 & p
\end{array}\right]\) and |A3| = 125 then find the value of p. (All India 2019)

Question 3.

img
If A is a square matrix satisfying A’A = I, write the value of |A|. (All India 2019)

Question 4.

img
If A and B are square matrices of the same order 3, such that |A| = 2 and AB = 27. Write the value of |B|. (Delhi 2019)

Question 5.

img
Using properties of determinants, show that (All India 2019)
\(\left|\begin{array}{ccc}
3 a & -a+b & -a+c \\
-b+a & 3 b & -b+c \\
-c+a & -c+b & 3 c
\end{array}\right|\) = 3(a + 6 + c) (ab + be + ca)

Question 6.

img
Using properties of determinants, prove the following (Delhi 2019)
\(\left|\begin{array}{ccc}
a+b+c & -c & -b \\
-c & a+b+c & -a \\
-b & -a & a+b+c
\end{array}\right|\) = 2(a + b) (b + c) (c + a)

Question 7.

img
Using properties of determinants, prove the following (Delhi 2019, 2012C, 2009)
\(\left|\begin{array}{ccc}
a & b & c \\
a-b & b-c & c-a \\
b+c & c+a & a+b
\end{array}\right|\) = a3 + b3 + c3 – 3abc

Question 8.

img
Show that for the matrix A = \(\left[\begin{array}{rrr}
1 & 1 & 1 \\
1 & 2 & -3 \\
2 & -1 & 3
\end{array}\right]\), A3 – 6A2 + 5A + 11I = O. Hence, find A-1. (All India 2019)

Question 9.

img
If A = \(\left[\begin{array}{lll}
1 & 3 & 4 \\
2 & 1 & 2 \\
5 & 1 & 1
\end{array}\right]\), find A-1. Hence solve the system of equations
x + 3y + 4z = 8
2x + y + 2z = 5
and 5x + y + z = 7. (All India 2019)

Question 10.

img
If A = \(\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 0 & 2 \\
3 & 1 & 1
\end{array}\right]\), find A-1. Hence, solve the system of equations x + y + z = 6, x + 2z = 7, 3x + y + z = 12. (Delhi 2019)
Great Job! continue working on more practice questions?

Question 1.

img
Using properties of determinants, prove that (CBSE 2018)
\(\left|\begin{array}{ccc}
1 & 1 & 1+3 x \\
1+3 y & 1 & 1 \\
1 & 1+3 z & 1
\end{array}\right|\) = 9 (3xyz + xy + yz + zx).

Question 2.

img
Using properties of determinants, prove that (CBSE 2018C)
\(\left|\begin{array}{ccc}
5 a & -2 a+b & -2 a+c \\
-2 b+a & 5 b & -2 b+c \\
-2 c+a & -2 c+b & 5 c
\end{array}\right|\) = 12 (a + b + c) (ab + bc + ca).

Question 3.

img
Given A = \(\left[\begin{array}{cc}
2 & -3 \\
-4 & 7
\end{array}\right]\), compute A and show that 2A-1 = 9I – A (CBSE 2018)

Question 4.

img
If A =\(\left[\begin{array}{ccc}
2 & -3 & 5 \\
3 & 2 & -4 \\
1 & 1 & -2
\end{array}\right]\), A-1. Use it to solve the system of equations 2x – 3y + 5z = 11, 3x + 2y – 4z = -5, x + y – 2z = -3. (CBSE 2018)

Question 5.

img
Given A = \(\left[\begin{array}{lll}
5 & 0 & 4 \\
2 & 3 & 2 \\
1 & 2 & 1
\end{array}\right]\), B-1 = \(\left[\begin{array}{lll}
1 & 3 & 3 \\
1 & 4 & 3 \\
1 & 3 & 4
\end{array}\right]\), compute (AB)-1. (CBSE 2018C)

Question 6.

img
Using properties of determinants, prove that (Delhi 2017: All India 2017)
\(\left|\begin{array}{ccc}
x & x+y & x+2 y \\
x+2 y & x & x+y \\
x+y & x+2 y & x
\end{array}\right|\) = 9y2(x + y).

Question 7.

img
If for any 2 × 2 square matrix A, A(adj A) = \(\left[\begin{array}{ll}
8 & 0 \\
0 & 8
\end{array}\right]\), then write the value of |A|. (All India 2017)

Question 8.

img
Determine the product of \(\left[\begin{array}{ccc}
-4 & 4 & 4 \\
-7 & 1 & 3 \\
5 & -3 & -1
\end{array}\right]\) \(\left[\begin{array}{ccc}
1 & -1 & 1 \\
1 & -2 & -2 \\
2 & 1 & 3
\end{array}\right]\) and then Use to solve the system of equations
x – y + z = 4
x – 2y – 2z = 9
and 2x + y + 3z = 1. (All India 2017, Delhi 2012C)

Question 9.

img
Use Products \(\left[\begin{array}{rrr}
1 & -1 & 2 \\
0 & 2 & -3 \\
3 & -2 & 4
\end{array}\right]\left[\begin{array}{rrr}
-2 & 0 & 1 \\
9 & 2 & -3 \\
6 & 1 & -2
\end{array}\right]\)
to solve the system equations
x – y + 2z = 1
2y – 3z = 1
and 3x – 2y + 4z = 2. (Delhi 2017, Foreign 2011)

Question 10.

img
Find the maximum value of (Delhi 2016)
\(\left|\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1+\sin \theta & 1 \\
1 & 1 & 1+\cos \theta
\end{array}\right|\)
Great Job! continue working on more practice questions?

Do you have a question? Ask us.

  • Typical response between 24-48 hours

  • Get personalized response

  • Free of Cost

  • Access to community

Trending Articles